Klávesové zkratky na tomto webu - základní
Přeskočit hlavičku portálu

Proč se nedá světlo chytit do krabice od bot

10. 07. 2017 8:00:05
Zásoby jsou dobrá věc – ať už se jedná o obilí nebo o whisky. Nebylo by skvělé mít zásoby ze světla? Hodily by se, když je v noci tma. (délka blogu 7 min.)

Obilí, whisky, pitná voda, pivo nebo uhlí – to všechno jsou látky, které mají jedno společné. Dají se z nich tvořit zásoby pro špatné časy. Mají ještě jednu základní vlastnost – dají se chytit do ruky. Možná se to zdá být až příliš triviální, ale právě to je důvod, proč se světlo nedá uložit do pomyslné zásobárny a uchovávat ho (například v lahvích) na horší (temnější) časy.

Fyzikální charakter hmoty

Hmotu kolem nás tvoří několik druhů tzv. elementárních (tedy dále nedělitelných) částic. Když si představíte složitost vesmíru, je až s podivem, že oněch základních částic, ze kterých se vesmír skládá, zase tolik není.

Hmota – tedy obilí, whisky, pitná voda nebo třeba uhlí – se skládá z jednotlivých malých komplexů, kterým říkáme atomy. Jakkoliv jsou atomy různorodé (každý chemický prvek má svou vlastní konstrukci), mají vždy podobnou strukturu. V podstatě se naše „normální, viditelná hmota“ skládá z jader a většího nebo menšího množství elektronů, které se kolem jader pohybují po různě zformovaných oběžných drahách.

Jádra atomů hmoty se skládají ze dvou druhů kvarků, kterým říkáme „up“ a „down“. V naší hmotě se vyskytují ve trojicích. Podle toho, kolik „up“ a kolik „down“ kvarků se sdruží do jedné trojice, vznikne proton nebo neutron. Spolu pak různé množství protonů a neutronů vytváří jádro atomu určitého chemické prvku.

Další částicí, která se podílí na tvorbě naší hmoty, je elektron. Obíhá jádro a vyvažuje elektrický náboj, který mají uvnitř jádra skryté protony. Jelikož mají různé chemické prvky různou hodnotu náboje jádra, musí mít i různé množství elektronů, které toto jádro obíhají.

Fyzikální charakter světla

To, čemu lidově říkáme „světlo“ má úplně jiný charakter. Skládá se sice také z elementárních částic – tím ale veškerá podoba s hmotou, jakou je obilí, whisky, voda nebo uhlí, končí.

Těmto částicím se říká fotony. Patří do skupiny výměnných částic fyzikálních sil. Náš vesmír totiž tvoří nejen hmota, ale také fyzikální zákony a síly. Známé jsou zatím čtyři síly: silná s slabá interakce, která působí jen na krátkou vzdálenost v jádrech protonů a neutronů, elektromagnetická síla, která je přitažlivá nebo odpudivá a gravitační síla, která je vždy přitažlivá. V běžném životě přitom registrujeme jen poslední dvě, protože jádra atomů (ve kterých působí silná a slabá interakce) jsou příliš malá na běžné pozorování.

Obě „běžné“ síly – elektromagnetismus a gravitace – tvoří silová pole. Ta se rozkládají kolem zdroje, kterým může být v případě elektromagnetismu kladný nebo záporný náboj a v případě gravitace uskupení hmoty. Když se takovému poli dodá energie, vyprodukuje tzv. výměnnou částici. Tou je u elektromagnetismu foton a u gravitace zatím neobjevená částice graviton.

Fotony jsou částice, které v sobě nesou určitou energii, nemají ale klidovou hmotnost tak, jako ji mají částice, které tvoří hmotu. Fotony totiž nikdy v klidu nejsou. Pohybují se neustále stejnou rychlostí, která je shodou okolností také nejvyšší rychlost, jakou se může v našem vesmíru šířit informace – rychlostí světla.

Proč je tma, když se zhasne?

Z fyzikálních vlastností světla vyplývá také odpověď na otázku: „Proč je tma, když se zhasne?“ Světelný zdroj si nesmíme představovat jako nějakou schránku, ve které je světlo uskladněno a ze které se světlo vypouští v případě potřeby. Zdroj světlo jen v určitém momentě vyprodukuje.

Ze zdroje se světlo šíří tak dlouho, dokud nenarazí na pevnou překážku. Při „nárazu“ pak mají fotony dvě možnosti. Buď se odrazí, nebo se absorbují, když se jejich energie předá částečkám hmoty. Odražený foton pak letí dál prostorem až do té doby, kdy znovu narazí na překážku a buď se odrazí, nebo je překážkou absorbován.

O fotonech, které naleznou cestu do citlivé vrstvy v našich očích a absorbují se nich, říkáme, že je „vidíme“ Ve skutečnosti registrujeme nervové impulsy, které se absorbovanými fotony vyvolaly. Podle množství těchto fotonů pak rozeznáváme, jestli je tma, šero nebo světlo.

Když vypneme zdroj světla, například lampu, ukončíme produkci fotonů. Už vyprodukované a existující fotony dorazí k nejbližší překážce a odrazí se od ní nebo se v ní absorbují. Odražené fotony se pak dostanou k další překážce a všech se opakuje. To se děje až do té doby, kdy nezbude žádný volný foton. Vzhledem k tomu, že se fotony pohybují obrovskou rychlostí, probíhá celý děj tak rychle, že ho nezaznamenáme – zdá se, že po vypnutí lampy (zdroje světla) se okamžitě rozhostila tma.

Proč se nedá světlo chytit do krabice od bot?

Ze stejného důvodu se nedá světlo skladovat. Pakliže narazí na překážku, která by jej mohla zpomalit, tak se od ní buď odrazí, nebo se pohltí. Fotony pak přestanou existovat a jejich energie se předá elektronům ve hmotě překážky.

Elektrony se pohybují kolem jádra hmoty určitou rychlostí a nacházejí se na určitých specifických drahách v předem určené vzdálenosti od jádra atomu. Přidaná energie je může tzv. nabudit, tedy převést na jinou dráhu. Elektrony se samozřejmě snaží takové energie zase zbavit a vrátit se tam, kam patří. Přebytečnou energie vyzařují zpět ve formě fotonů, zpravidla se v běžných podmínkách ale jedná o fotony tepelného záření.

Fotony, které bychom chtěli uschovat v krabici od bot, tedy krabici jen nahřejí. Běžné fotony, které vnímáme očima jako světlo, mají relativně nízkou energii. Nahřejí tedy zeď nebo krabici od bot jen nepatrně a my si takové změny těžko všimneme.

Autor: Dana Tenzler | pondělí 10.7.2017 8:00 | karma článku: 23.20 | přečteno: 704x

Další články blogera

Dana Tenzler

Jak vznikl vesmír? A co bylo předtím?

Co způsobilo vznik vesmíru? Mohl vzniknout náhodně nebo je dílem božím? Na obě otázky umí dnes fyzika dát komplikovanou a zatím samozřejmě neověřenou odpověď.

20.11.2017 v 8:00 | Karma článku: 24.01 | Přečteno: 793 | Diskuse

Dana Tenzler

Tajemství alchymistů – jak vzniká zlato (vesmírná alchymie 6/6)

Poslední nahlédnutí do tyglíku, ve kterém se vaří přísady pro celý vesmír. Vznik těžkých prvků – mezi nimi i zlata nebo uranu – nebyl žádnou náhodou. (délka blogu 8 min.)

16.11.2017 v 8:00 | Karma článku: 22.03 | Přečteno: 482 | Diskuse

Dana Tenzler

Kdo je kdo? (vesmírná alchymie 5/6)

V jednom jediném nepatrném okamžiku se rozhoduje o bytí a nebytí. Jen málokterý jev je dramatičtější, než výbuch supernovy II. typu. O tom, jak se vesmír stal dobře vybavenou chemickou laboratoří. (délka blogu 8 min.)

13.11.2017 v 8:00 | Karma článku: 18.04 | Přečteno: 340 | Diskuse

Dana Tenzler

Vesmírná doba železná (vesmírná alchymie 4/6)

Odkud pochází prvek, bez něhož si neumíme představit život vyspělé civilizace? Jak a proč vznikalo ve hvězdách první železo? (délka blogu 5 min.)

9.11.2017 v 9:55 | Karma článku: 19.43 | Přečteno: 419 | Diskuse

Další články z rubriky Věda

Jakub Tenčl

Jak myšlenky ovlivňují tělo?

Otázka, která se může zdát jasná, avšak jaké jsou konkrétní chemické procesy vyvolané myšlenkou? Pokud je pravda, že myšlenka má moc ovlivnit systém chemické přeměny, pak další otázkou je...

21.11.2017 v 18:13 | Karma článku: 7.71 | Přečteno: 137 |

Michal Češek

Onemocnění, které mladé kulturistce obrátilo život naruby

Příběh Zoey Wright z britského Cornwallu může být velkou inspirací pro mnohé z těch, které postihla vážná nemoc, ale také pro ty, kteří se zajímají o oblast fitness a kulturistiky.

20.11.2017 v 20:32 | Karma článku: 13.79 | Přečteno: 930 | Diskuse

Dana Tenzler

Jak vznikl vesmír? A co bylo předtím?

Co způsobilo vznik vesmíru? Mohl vzniknout náhodně nebo je dílem božím? Na obě otázky umí dnes fyzika dát komplikovanou a zatím samozřejmě neověřenou odpověď.

20.11.2017 v 8:00 | Karma článku: 24.01 | Přečteno: 793 | Diskuse

Dana Tenzler

Tajemství alchymistů – jak vzniká zlato (vesmírná alchymie 6/6)

Poslední nahlédnutí do tyglíku, ve kterém se vaří přísady pro celý vesmír. Vznik těžkých prvků – mezi nimi i zlata nebo uranu – nebyl žádnou náhodou. (délka blogu 8 min.)

16.11.2017 v 8:00 | Karma článku: 22.03 | Přečteno: 482 | Diskuse

Jan Švadlenka

Polemika s panem Kapolkou o evoluci aneb ukázka dezinformace - část III.

V tomto článku hodlám ukončit svou polemiku s panem Kapolkou. Uvedu argumenty svědčící pro evoluci a v závěru vysvětlím, v čem spočívá ona dezinformace, která se prolínala všemi jeho články.

16.11.2017 v 0:07 | Karma článku: 18.30 | Přečteno: 473 | Diskuse
Počet článků 392 Celková karma 22.44 Průměrná čtenost 728

Zajímám se o přírodní vědy. Píšu o tom, co mě zaujalo při toulkách internetem. Vzhledem k občastým dotazům - ano, skutečně mám vzdělání. Ne, nebudu tu vypisovat všechny svoje tituly, knihy a vědecké práce. Tenhle blog provozuji ve svém volném čase pro radost. 

Pokud vás blog pobaví nebo se v něm dočtete něco zajímavého - je jeho účel splněn. Přijďte si popovídat do diskuze, často je ještě zajímavější než blog sám, díky milým a znalým návštěvníkům. 



Najdete na iDNES.cz

mobilní verze
© 1999–2017 MAFRA, a. s., a dodavatelé Profimedia, Reuters, ČTK, AP. Jakékoliv užití obsahu včetně převzetí, šíření či dalšího zpřístupňování článků a fotografií je bez souhlasu MAFRA, a. s., zakázáno. Provozovatelem serveru iDNES.cz je MAFRA, a. s., se sídlem
Karla Engliše 519/11, 150 00 Praha 5, IČ: 45313351, zapsaná v obchodním rejstříku vedeném Městským soudem v Praze, oddíl B, vložka 1328. Vydavatelství MAFRA, a. s., je členem koncernu AGROFERT.