Úterý 21. září 2021, svátek má Matouš
  • schránka
  • Přihlásit Můj účet
  • Úterý 21. září 2021 Matouš

Jak se vyrobí nový chemický prvek?

28. 06. 2021 8:00:49
V průběhu dvacátého století byla zaplněna poslední bílá místa na mapě chemických prvků. Když dnes chceme obdivovat nový prvek - musíme ho vyrobit uměle. První ze seriálu pěti blogů (délka 5 min).

Když v roce 1869 zveřejnil Dmitrij Ivanovič Mendělejev svůj periodický systém chemických prvků, vypadal ještě trochu jinak, než jej známe dnes.

Chyběla v ní spousta prvků, které dnes považujeme za samozřejmé.

Mendělejevova zásluha spočívá také v tom, že kdysi tyhle tehdy ještě neznámé prvky... předpověděl.

Slavný vědec měl dokonce to štěstí, že byla ještě za jeho života teorie potvrzena. Byly totiž objeveny jím předvídané prvky scandium a germanium. Po jeho smrti pak následovalo rhenium - a nakonec se v roce 1937 povedlo syntetizovat poslední chybějící prvek, který se na zemi prakticky nevyskytuje. Dostal jméno technecium - na počest jeho umělé (technické) výroby.

Transurany

Dlouhou dobu byl posledním (nejtěžším) prvkem tabulky uran s protonovým číslem 92. Vědci byli samozřejmě zvědaví, jestli mohou existovat ještě těžší prvky. Bylo by to bývalo jen logické. Jako první z transuranů bylo objeveno plutonium a neptunium. Stalo se tak v jaderné laboratoři Berkeley, v USA, při experimentech, ve kterých byl uran ostřelován neutrony.

Do jádra nejběžnějšího izotopu uranu byl implantován neutron, vzniklo tak nestabilní jádro uranu s přebytkem neutronů.

Poté v něm proběhla přeměna atomů uranu (s poločasem rozpadu několik desítek minut) na neptunium (pomocí beta rozpadu, kdy se jeden neutron rozpadá na elektron a proton, výsledné jádro má o proton víc a mění svůj chemický charakter - stává se jiným chemickým prvkem, zatímco elektron se vyzáří ve formě beta záření).

Další proměna, kdy se opět jeden neutron změní na proton a elektron, potřebuje více času. Poločas rozpadu je zde přes dva dny. Vznikne pak atom plutonia.

Američané ve výzkumu supertěžkých prvků samozřejmě pokračovali i po nálezu neptunia a plutonia. Vedoucí tamního výzkumného týmu, Glen Seaborg dostal v roce 1951 Nobelovu cenu za objev hned devíti transuranů: plutonia, americia, curia, berkelia, kalifornia, einsteinia, fermia, mendělevia, nobelia a seaborgia, které po něm dokonce pojmenovali.

Mistrovským kouskem byl objev prvku, který byl později na počest Mendělejeva pojmenován mendělevium. Vyrobili ho ostřelováním einsteinia heliovými jádry. Problém spočíval v tom, že tehdejší zásoby einsteinia se pohybovaly v řádu (10)-12 gramu. To je množství, které byste neviděli nejen pouhým okem, ale ani pod běžným mikroskopem.

Mendelevium bylo mimochodem posledním prvkem, k jehož výrobě se použily protony, neutrony nebo heliová jádra - tedy poměrně lehké “náboje”, kterými vědci ostřelovali terče z už existujících těžkých prvků.

Na výrobu ještě těžších chemických prvků se tento mechanismus už nehodil. Bylo potřeba vymyslet jinou techniku výroby. Nejen že bylo nutné použít těžší jádra coby náboje (využila se pak jádra dusíku, kyslíku, apod.) ale hlavně také větší a silnější urychlovače.

Už v roce 1957 byl uveden do provozu silný lineární urychlovač v Berkeley (dostal název HILAC - heavy ion linear accelerator). Na opačné straně zeměkoule ale vědci také nezaháleli. O tři roky později, v roce 1960 byl zprovozněn tzv. cyklotron U-300 v ruské Dubně.

Obě laboratoře pak spolu dlouhé roky soupeřily i spolupracovaly - a zasloužily se o výrobu dalších těžších prvků. Nejtěžším z nich je prvek, který má v jádře 106 protonů, má tedy v tabulce 106. pozici.

Přitom dostal prvek č. 105 (vyrobený v Dubně z americia a neonu na počest slavné laboratoře jméno dubnium a prvek č. 106 (vyrobený v Berkeley z kalifornia a kyslíkových atomů) saeborgium na počest výše zmiňovaného Glena Seaborga.

Když se pak vědci chystali syntetizovat 107. a další prvky, objevily se před nimi nečekané problémy. Osvědčená metoda přestala pro tyto těžká jádra fungovat. Ukázalo se, že na vině byla fyzika a samotná podstata výroby supertěžkých atomů.

Horká fúze

Tyto první pokusy, které prováděli vědci v USA a SSSR v polovině dvacátého století, spočívaly v tom, že se proti terči z těžkého prvku vystřelí náboj lehčího jádra. Při některých z těchto zásahu se lehčí jádra spojí s těžkými - a vznikají ještě těžší prvky.

Tak to funguje až do chvíle, kdy chcete syntetizovat prvek, který by byl těžší než seaborgium (prvek č. 106). Ještě těžší produkty horké fúze se totiž okamžitě rozpadají, takže není co detekovat.

Poté, co narazilo jádro lehkého prvku (náboj) do jádra těžšího prvku v terči, totiž vzniká nejprve přechodná fáze, slitina obou jader, která je rozžhavená na miliardy stupňů (pokud tu vůbec můžeme mluvit o ekvivalentu teploty). Ta se pak s největší pravděpodobností rozpadne na dva kusy s podobnou hmotností - nevytvoří tedy supertěžký prvek.

Aby se tak stalo, musela by jaderná slitina nejprve trošku “ochladnout” - tedy zbavit se části energie. To se děje v praxi vyzařováním hned několika neutronů za sebou.

Je tedy logické, že je pro slitinu jader jednodušší se rozpadnout na dvě přibližně stejně hmotné části, než pomalu chladnout speciálním způsobem, aby se vytvořil kýžený supertěžký prvek. Pravděpodobnost vzniku supertěžkého jádra je při podobných experimentech jen zhruba 1: 100 000 až 1: 1 000 000. U velice těžkých jader (těžších než 106 protonů v jádře) to pak nefunguje vůbec.

Vědci se tedy museli poohlédnout po jiné technologii výroby. Řešením problému bylo využití “magických” jader.

Nejednalo se ani o magii ani temné síly - řešení nabídla sama fyzika.

Pokračování v příštím (čtvrtečním) blogu: Magická jádra a jejich využití k výrobě nových chemických prvků.


Autor: Dana Tenzler | pondělí 28.6.2021 8:00 | karma článku: 21.67 | přečteno: 374x

Další články blogera

Dana Tenzler

Malí, vzteklí trpaslíci a jejich planety

Je na planetách, obíhajících kolem malých poměrně chladných hvězd (červených trpaslíků) možný život? Zdá se, že podmínky nejsou tak špatné, jak jsme se domnívali. (délka ca. 5 min.)

20.9.2021 v 8:00 | Karma článku: 17.50 | Přečteno: 197 | Diskuse

Dana Tenzler

Co je nového na Marsu? Čínský rover Zhurong

Číně se podařilo umístit na povrch Marsu fungující rover. Má jméno Zhurong. Jak si momentálně vede? Délka blogu ca. 3 minuty.

16.9.2021 v 8:00 | Karma článku: 25.37 | Přečteno: 429 | Diskuse

Dana Tenzler

Návštěvníci z dalekých hvězdných soustav

Objekty z jiných planetárních soustav možná tvoří většinu Oortova oblaku. Vědci provedli nový výpočet a odhadli, že ve Sluneční soustavě může být daleko víc cizích těles, než si dosud myslel

13.9.2021 v 8:00 | Karma článku: 22.67 | Přečteno: 391 | Diskuse

Dana Tenzler

Haumea - nejrychleji rotující objekt ve Sluneční soustavě

Objekt, o kterém chci dnes psát, byl objeven 28. prosince 2004, tedy krátce po vánocích. Vědci mu tedy dali předběžné jméno Santa. (délka blogu 3 min.)

9.9.2021 v 8:00 | Karma článku: 25.86 | Přečteno: 509 | Diskuse

Další články z rubriky Věda

Dana Tenzler

Malí, vzteklí trpaslíci a jejich planety

Je na planetách, obíhajících kolem malých poměrně chladných hvězd (červených trpaslíků) možný život? Zdá se, že podmínky nejsou tak špatné, jak jsme se domnívali. (délka ca. 5 min.)

20.9.2021 v 8:00 | Karma článku: 17.50 | Přečteno: 197 | Diskuse

Zdenek Slanina

Svéráz národní tvořivosti pro zisk té SENZAČNĚ MODRÉ [©Hejma Ondřej*] (ne-)vojenské knížky

Kdyby za téma maturitních písemek padla o té senzačně modré knížce klasická otázka Co tím chtěl básník říci,* vznikaly by asi i bizarní výklady. Když teď došlo na lítost nad osudy odpíračů, vytanula mi jedna šaráda ze sedmdesátek.

20.9.2021 v 7:07 | Karma článku: 21.93 | Přečteno: 975 |

Jaroslav Flegr

V žádného Boha věřiti budeš

Tak jsem si tuhle zase povídal se svým kocourem Micíkem. Tentokrát o Bohu a hraní na vojáky. Posuďte sami, jak to dopadlo.

19.9.2021 v 11:09 | Karma článku: 38.58 | Přečteno: 8288 | Diskuse

Jan Tomášek

Oblouková míra - stupně, Ludolfovo číslo a radiány (výkon a točivý moment 4)

Bádání nad úhlovými mírami a jednotkami a výpočtem délky oblouku nebo celého obvodu kruhu. Novelizace předchozího příspěvku.

19.9.2021 v 8:16 | Karma článku: 4.42 | Přečteno: 164 | Diskuse

Jan Tomášek

Oblouková míra - stupně, Ludolfovo číslo a radiány (výkon a točivý moment 3)

Bádání nad "obloukovými mírami" - v podstatě by se mělo jednat o něco jako mezipříspěvek na téma "výkon a točivý moment" - tedy příspěvek "3".

16.9.2021 v 10:10 | Karma článku: 6.32 | Přečteno: 307 | Diskuse
Počet článků 699 Celková karma 23.73 Průměrná čtenost 1367

Zajímám se o přírodní vědy. Píšu o tom, co mě zaujalo při toulkách internetem. Vzhledem k občastým dotazům - ano, skutečně mám vzdělání. Ne, nebudu tu vypisovat všechny svoje tituly, knihy a vědecké práce. Tenhle blog provozuji ve svém volném čase pro radost. 

Pokud vás blog pobaví nebo se v něm dočtete něco zajímavého - je jeho účel splněn. Přijďte si popovídat do diskuze, často je ještě zajímavější než blog sám, díky milým a znalým návštěvníkům. 

Najdete na iDNES.cz